(51/5)^5=25^x

Simple and best practice solution for (51/5)^5=25^x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (51/5)^5=25^x equation:



(51/5)^5=25^x
We move all terms to the left:
(51/5)^5-(25^x)=0
We add all the numbers together, and all the variables
-25^x+(+51/5)^5=0
We multiply all the terms by the denominator
-25^x*5)^5+(+51=0
Wy multiply elements
-125x^2+51=0
a = -125; b = 0; c = +51;
Δ = b2-4ac
Δ = 02-4·(-125)·51
Δ = 25500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25500}=\sqrt{100*255}=\sqrt{100}*\sqrt{255}=10\sqrt{255}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{255}}{2*-125}=\frac{0-10\sqrt{255}}{-250} =-\frac{10\sqrt{255}}{-250} =-\frac{\sqrt{255}}{-25} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{255}}{2*-125}=\frac{0+10\sqrt{255}}{-250} =\frac{10\sqrt{255}}{-250} =\frac{\sqrt{255}}{-25} $

See similar equations:

| 114+(10x+16)=180 | | 24x+14=56 | | 86+(10x+16)=180 | | _2/3x=5=20-x | | 9x-x=80 | | 6x+14=4=4x | | 9x+52=79 | | 8x-10=12x+22 | | 73+(13x-10)=180 | | 13x+3(3x-18)=x-3 | | 2(x+43​ )2−5=123 | | 8x+2=7x+9 | | (X+3)+(2x+4)+(2x+3)+(x+8)+(3x-1)=360 | | -3a=8=14 | | 100-(4x+75)=180 | | y-4.2=12 | | a=(2*1.6)/0.96^2 | | 2/7x3/4=-13 | | 10=2.4^y | | x-2/10=3/20 | | -10x-13=-9x+20 | | 3(2b+5)=9 | | 17s-19=19s+19 | | 20=-3+5(w+8) | | 50-x=115-6x | | 59=8w-13 | | 23=2+3x+3 | | 6x+3x-12=0 | | 59=6n-8+13n | | -14=6(y-5)-24 | | 38+42=480/b | | 108=-y+224 |

Equations solver categories